FUZZY METRIC SPACES, FIXED POINT THEOREMS WITH INTEGRAL TYPE INEQUALITY

S. K.Malhotra*

N.Verma**

R.Sen***

Abstract

The aim of this paper is to present common fixed point theorem in fuzzy metric spaces for occasionally weakly compatible mappings by taking average with integral type inequality.

Keywords : Fuzzy metric space, occasionally weakly compatible (owc) mappings, common fixed point.

^{*} Department Mathematics, Govt. S .G .S .P .G . College Ganj Basoda Distt. Vidisha (M.P.) India.

^{**} Department Mathematics, S. D. Bansal College of Technology, Indore(M.P.) India.

^{***} Department Applied Mathematics, Shri Vaishnav Institute of Technology Indore (M.P.) India.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

<u>ISSN: 2249-0558</u>

INTRODUCTION

The concept of fuzzy set was initially introduced by Zadeh [28]. Kramosil and Michalek [15] introduced fuzzy metric space, many authors extend their views, Grorge and Veermani [6] modified the notion of fuzzy metric spaces with the help of continuous t-norms Grabiec[9], Subramanyam[30],Vasuki[28], Pant and Jha,[22] obtained some analogous results proved by Balasubramaniam et al. Subsequently, it was developed extensively by many authors and used in various fields, Jungck [12] introduced the notion of compatible maps for a pair of self maps. Several papers have come up involving compatible mapping proving the existence of common fixed points both in the classical and fuzzy metric spaces.

The theory of fixed point equations is one of the basic tools to handle various physical formulations. Fixed point theorems in fuzzy mathematics has got a direction of vigorous hope and vital trust with the study of Kramosil and Michalek [16], who introduced the concept of fuzzy metric space. Later on this concept of fuzzy metric space was modified by George and Veermani [8] Sessa [29] initiated the tradition of improving commutative condition in fixed point theorems by introducing the notion of weak commuting property. Further Juncgk [12] gave a more generalized condition defined as compatibility in metric spaces.

Jungck and Rhoades [13] introduced the concept of weakly compatible maps which were found to be more generalized than compatible maps.

Grabiec [9] obtained fuzzy version of Banach contraction principle. Singh and M.S. Chauhan [30] brought forward the concept of compatibility in fuzzy metric space. Pant [20, 21, 22] introduced the new concept reciprocally continuous mappings and established some common fixed point theorems. Balasubramaniam et al. [6], have shown that Rhoades [24] open problem on the existence of contractive definition which generates a fixed point but does not force the mappings to be continuous at the fixed point, posses an affirmative answer. Recent literature in fixed point in fuzzy metric space can be viewed in [3, 4, 11, 18, 26,32].

This paper proves the fixed point theorems on fuzzy metric spaces which generalize extend and fuzzify several known fixed point theorems for occasionally compatible maps on metric space by making use of integral type inequality.

2 Preliminary Notes

Definition 2.1 [28] A fuzzy set A in X is a function with domain X and values in [0,1].

Definition 2.2 [25] A binary operation * : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norms if it satisfies the following conditions:

- *(i) *is associative and commutative*
- (*ii*) **is continuous*;

 $(iii)a*1 = a \text{ for all } a \in [0,1];$

 $(iv)a^*b \le c^*d$ whenever $a \le c$ and $b \le d$, and $a, b, c, d \in [0,1]$.

Definition 2.3 [8] A 3-tuples (X,M, *) is said to be a fuzzy metric space (shortly FM)

Space) if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on

 $X^2 \times [0, \infty)$ satisfying the following conditions, for all x, y, $z \in X$ and s, t > 0;

(FM 1): M(x,y,t) > 0

(FM 2): M(x, y, t) = 1 for all t > 0 if and only if x = y

(FM 3): M(x, y, t) = M(y, x, t)

 $(FM 4): M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$

(FM 5): $M(x, y, .) : [0, \infty) \rightarrow (0, 1]$ is left continuous.

(X, M,*) denotes a fuzzy metric space, (x,y,t) can be thought of as

degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1

for all t > 0. In the following example every metric induces a fuzzy metric.

Example 2.4 Let X = [0,1], t-norm defined by $a^*b = min\{a,b\}$ where $a,b \in [0,1]$ and M is the fuzzy set on $X^2 \times (0, \infty)$ defined by $M(x,y,t) = \left[\exp\left\{\frac{|x-y|}{t}\right\}\right]^{-1}$ for all $x,y \in X$, t > 0. Then (X,M, *) is a fuzzy metric space.

Example 2.5 (Induced fuzzy metric [7]) Let (X, d) be a metric space, denote a *b = a.b& for all $a,b \in [0,1]$ and let M_d be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}$$

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric induced by a metric **d** as the standard intuitionistic fuzzy metric.

Definition 2.6 [13] Two self mappings f and g of a fuzzy metric space (X,M,*) are called compatible if $\lim_{n\to\infty} M(fg x_n, gf x_n, t) = 1$ wherever $\{x_n\}$ is sequence in X such that $\lim_{n\to\infty} f x_n = \lim_{n\to\infty} g x_n = x$ for some x in X

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

Definition 2.7 [7] Two self maps f and g of a fuzzy metric space (X, M, *) are called reciprocally continuous on X if $\lim_{n\to\infty} f x_n = fx$ and $\lim_{n\to\infty} gf x_n = gx$ wherever $\{x_n\}$ is sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} g x_n = x$ for some x in X.

SSN: 2249-05

Definition 2.8 [8] : Let (X,M, *) be a fuzzy metric space. Then

- (a) A sequence $\{x_n\}$ in X is said to converges to x in X if for each $\varepsilon > 0$ and each t > 0, there exist $n_o \in N$ such that $M(x_n, x, t) > 1 - \varepsilon$ for all $n \ge n_o$.
- (b) A sequence $\{x_n\}$ in X is said to be Cauchy if for each $\varepsilon > 0$ and each t > 0, there exist $n_o \in N$ such that $M(x_n, x_m, t) > 1 \varepsilon$ for all $n, m \ge n_{o..}$
- (c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.9 Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in X which is a coincidence point of f and g at which f and g commute.

A. Al-Thagafi and Naseer Shahzad [5] shown that occasionally weakly is weakly compatible but converse is not true.

Definition 2.10 Let (X,d) be a compatible metric space, $\alpha \in [0,1]$, $f:X \to X$ a mapping such that for each $x, y \in X$

 $\int_{0}^{d(fx,fy)} \varphi(t)dt \leq \alpha \int_{0}^{d(x,y)} \varphi(t)dt \text{ where } \varphi: R^{+} \to R \text{ is lebesgue integral mapping which is summable,}$

$$\varepsilon > 0, \int_0^\varepsilon \varphi(t) dt > 0$$

nonnegative and such that, for each. Then f has a unique common fixed $z \in X$ such that for each $x \in X$, $\lim_{n \to \infty} f^n x = z$

Rhodes[30], extended this resul by replacing the above condition by the following

$$\int_{0}^{d(fx,fy)} \varphi(t) dt \leq \alpha \int_{0}^{\max\{d(x,y), d(x,fx), d(y,fy), \frac{1}{2}[d(x,fy) + d(x,fx)]\}} \varphi(t) dt$$

Ojha et al.(2010). Let (X,d) be a metric space and let $f: X \to X$, $F: X \to CB(X)$ be single and a multi valued map respectively, suppose that f and Fare occasionally weakly commutative (owc) and satisfy the inequality

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

Volume 2, Issue 12

ISSN: 2249-05

 $\int_{0}^{d(Fx,Fy)^{p}} \varphi(t)dt \leq \int_{0}^{ad(fx,fy)d^{p-1}(fx,Fx),ad(fx,fy)d^{p-1}(fy,Fy),} ad(fx,Fx)d^{p-1}(fy,Fy),cd^{p-1}(fx,Fy)d(fy,Fx)} \varphi(t)dt$

For all *x*, *y* in *X*, where $p \ge 2$ is an integer $a \ge o$ and 0 < c < 1 then *f* and *F* have unique common fixed point in *X*.

Example 2.11 [5] Let R be the usual metric space. Define S, T: $R \rightarrow R$ by Sx = 2x and $Tx = x^2$ for all $x \in R$. Then Sx = Tx for x = 0, 2 but ST0 = TS0, and $ST2 \neq TS2$. Hence S and T are occasionally weakly compatible self maps but not weakly compatible **Lemma 2.12** [14] Let X be a set, f, g owc self maps of X. If f and g have a unique point of coincidence, w = fx = gx, then w is the unique common fixed point of f and g. **Lemma 2.13** Let (X,M, *) be a fuzzy metric space. If there exist $q \in (0, 1)$ such that $M(x, y, qt) \ge M(x, y, t)$ for all $x, y \in X \& t > 0$ then x = y

3 Main Results

Theorem 3.1 Let (X,M, *) be a complete fuzzy metric space and let P, Q, S and T are selfmapping of X. Let the pairs {P,S} and {Q,T} be owc. If there exists $q \in (0,1)$ such that

$$\int_{0}^{M(Px,Qy,qt)} \varphi(t)d(t) \ge \int_{0}^{\min\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\}} \varphi(t)d(t)$$
(1)

For all x, $y \in X$ and for all t > 0, then there exists a unique point $w \in X$ such that Pw = Sw = w and a unique point $z \in X$ such that Qz = Tz = z Moreover, z = w, so that there is a unique common fixed point of P,Q,S and T. **Proof:** Let the pairs { P,S} and { Q,T} be owe so there are points $x, y \in X$ such that Px = Sx and Qy = Ty. We claim that Px = Qy. If not by inequality (1) $\int_{0}^{M(Px,Qy,qt)} \varphi(t)d(t) \ge \int_{0}^{\min\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3},M(Sx,Px,t),M(Qy,Ty,t)\}} \varphi(t)d(t)$ $= \int_{0}^{\min\{\frac{M(Px,Qy,t)+M(Px,Qy,t)+M(Qy,Sx,t)}{3},M(Px,Px,t),M(Qy,Qy,t)\}} \varphi(t)d(t)$ $= \int_{0}^{\min\{\frac{M(Px,Qy,t)+M(Px,Qy,t)+M(Qy,Sx,t)}{3},1,1\}} \varphi(t)d(t)$

 $=\int_0^{M(Px,Qy,t)}\varphi(t)\,d(t)$

Therefore Px = Qy, i.e. Px = Sx = Qy = Ty. Suppose that z such that Pz = Sz then by (1) we have Pz = Sz = Qy = Ty so Px = Pz and w = Px = Sx is the unique point of coincidence of P and S.

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering

Volume 2, Issue 12

Similarly there is a unique point $z \in X$ such that z = Qz = Tz.

Assume that $w \neq z$. We have

$$\int_{0}^{M(w,z,qt)} \varphi(t)d(t) = \int_{0}^{M(Pw,Qz,qt)} \varphi(t)d(t)$$

$$\int_{0}^{M(Px,Qy,qt)} \varphi(t)d(t) \ge \int_{0}^{\min\{\frac{M(Sx,Tz,t)+M(Pw,Tz,t)+M(Qz,Sw,t)}{3},M(Sw,Pz,t),M(Qz,Tz,t)\}} \varphi(t)d(t)$$

$$= \int_{0}^{\min\{\frac{M(w,z,t)+M(w,z,t)+M(w,z,t)}{3},M(w,z,t),M(z,z,t)\}} \varphi(t) d(t)$$

 $=\int_0^{M(w,z,t)}\varphi(t)\,d(t)$

Therefore we have z = w by Lemma 2.14 and z is a common fixed point of P, Q, S and T. The uniqueness of fixed point holds from (1)

Theorem3.2 Let (X,M, *) be complete fuzzy metric space and let P,Q,S and T be self mappings of X .let the pairs $\{P,S\}$ and $\{Q,T\}$ be owc. If there exists $q \in (0,1)$ such that

$$\int_{0}^{\emptyset[M(P_{x},Q_{y},q_{t})]} \varphi(t)d(t) \ge \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3},M(Sx,Px,t),M(Qy,Ty,t)\right\}]} \varphi(t)d(t) (2)$$

for all x, $y \in X$ and $\emptyset:[0,1] \longrightarrow [0,1]$ such that $\emptyset(t) > t$ for all 0 < t < 1, then there exist a unique common fixed point of P, Q,S and T

Proof: *From equation* (2)

$$\int_{0}^{\emptyset[M(Px,Qy,qt)]} \varphi(t)d(t) \ge \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\right\}]} \varphi(t)d(t)$$

$$\ge \int_{0}^{\emptyset[M(Px,Qy,t)]} \varphi(t)d(t) \qquad from \ theorem \ 3.1$$
Now proof fallows by (3.1)

Theorem 3.3 Let (X,M, *) be a complete fuzzy metric space and let P,Q,S and T are self mappings of X.

Let the pairs $\{P,S\}$ and $\{Q,T\}$ be owc. If there exists $q \in (0,1)$ such that

$$\int_{0}^{\emptyset[M(Px,Qy,qt)]} \varphi(t) d(t) \ge \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Qy,Sx,t)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\right\}]} \varphi(t) d(t)$$
(3)

for all $x, y \in X$ and $\emptyset: [0,1]^4 \rightarrow [0,1]$ such that $\emptyset(t,1,t,t) > t$ for all 0 < t < 1 then there exists a unique common fixed point of P,Q,S and T.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

ISSN: 2249-0558

Proof: Let the pairs $\{P,S\}$ and $\{Q,T\}$ are owc , there are points $x, y \in X$ such that Px = Sx and Qy

$$= Ty are$$

Claim that Px = Qy. By inequality (3) we have

$$\int_{0}^{\emptyset[M(Px,Qy,qt)]} \varphi(t)d(t) \geq \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3},M(Sx,Px,t),M(Qy,Ty,t)\right\}]} \varphi(t)d(t)$$

$$= \int_{0}^{\emptyset[min\left\{\frac{M(Px,Qy,t)+M(Px,Qy,t)+M(Qy,Px,t)}{3},M(Px,Px,t),M(Qy,Qy,t)\right\}]} \varphi(t)d(t)$$

$$= \int_{0}^{\emptyset\left\{M(Px,Qy,t),1,1\right\}} \varphi(t)d(t)$$

$$[::M(Px,Px,t)=1,M(Qy,Qy,t)=1]$$

$$> \int_{0}^{\emptyset[M(Px,Qy,t)]} \varphi(t)d(t)$$

a contradiction, therefore Px = Qy i.e. Px = Sx = Qy = Tysuppose that there is another point z such that Pz = Sz then by (3) we have Pz = Sz = Qy = Ty so Px = Pz and w = Px = Tx is unique point of coincidence of P and T. By Lemma 2.14 w is a unique common fixed point of P and S, similarly there is a unique point $z \in X$ such that z = Qz = Tz..Thus z is common fixed point of P,Q,S and T. The uniqueness

of fixed point holds from (3)

Corollary 3.4 Let (X,M,*) be a complete fuzzy metric space and let P,Q,S and T be self mapping of X

Let the pairs $\{P,S\}$ and $\{Q,T\}$ are owc.

If there exists a point $q \in (0,1)$ for all $x, y \in X$ and t > 0

$$\int_{0}^{\emptyset[M(Px,Qy,qt)]} \varphi(t)d(t) \ge \int_{0}^{\emptyset[min\left\{\left\{\frac{M(Sx,Ty,t)+M(Qy,Sx,2t)+M(Px,Ty,t)}{3}\right\}*M(Px,Sx,t)*M(Qy,Ty,t)\right\}\right\}} \varphi(t)d(t)$$
(5)

then there exists a unique common fixed point of P,Q,S and T.

Proof: We have

$$\int_{0}^{\emptyset[M(Px,Qy,qt)]} \varphi(t)d(t) \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Qy,Sx,2t)+M(Px,Ty,t)}{3}\}*M(Px,Sx,t)*M(Qy,Ty,t)\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)*M(Ty,Qy,t)+M(Px,Ty,t)}{3}\}*M(Px,Sx,t)*M(Qy,Ty,t)\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)*M(Qy,Qy,t)+M(Px,Ty,t)}{3}\}*M(Px,Px,t)*M(Qy,Ty,t)\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)*1+M(Px,Ty,t)}{3}\}*1*1\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)*1+M(Px,Ty,t)}{3}\}*1*1\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Px,Ty,t)}{3}\}*1*1\}\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Px,Ty,t)}{3}\}*1*1\right\}} \varphi(t)d(t)} \\ \ge \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Px,Ty,t)}{3}\}}*1*1\right\}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Px,Ty,t)}{3}}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Sx,Ty,t)}{3}}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Sx,Ty,t)}{3}}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Sx,Ty,t)}{3}}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)+M(Sx,Ty,t)+M(Sx,Ty,t)}{3}}} \varphi(t)d(t)} \\ = \int_{0}^{\emptyset[min\left\{\frac{M(Sx,Ty,t)$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering

http://www.ijmra.us

December 2012 Volume 2, Issue 12

$$\geq \int_0^{\emptyset[M(Px,Px,t)]} \varphi(t) d(t)$$

[
$$\therefore Px = Sx \text{ and } Qy = Ty$$
]

SSN: 2249-05

and therefore from Theorem 3.4, P, Q, S and T have common fixed point.

Corollary 3.6 Let (X,M,*) be complete fuzzy metric space and let P,Q,S and T be self-mapping of X. Let the pairs $\{P,S\}$ and $\{Q,T\}$ are owc. If there exist point $q \in (0,1)$ for all $x, y \in X$ and t > 0

$$\int_{0}^{M(Px,Qy,qt)} \varphi(t)d(t) \ge \int_{0}^{M(Sx,Ty,t)} \varphi(t)d(t)$$
(6)

then there exists a unique common fixed point of P,Q,S and T.

Proof: The proof follows from Corollary 3.5

Theorem 3.7 Let (X, M, *) be complete fuzzy metric space. Then continues self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping P of X such that the following conditions are satisfied

$$(i) \quad PX \subset TX \cap SX$$

- (*ii*) pairs { P,S} and {P,T} are weakly compatible,
- (iii) there exists a point $q \in (0,1)$ such that for every $x, y \in X$ and t > 0

 $\int_{0}^{M(Px,Qy,qt)} \varphi(t) d(t) \ge \int_{0}^{\left\{\frac{M(Sx,Ty,t) + M(Px,Sx,t) + M(Px,Ty,t)}{3} * M(Py,Ty,t)\right\}} \varphi(t) d(t)$ (7)

Then P, S and T have a unique common fixed point.

Proof: Since compatible implies owc, the result follows from 3.4

Theorem 3.8 Let (X,M,*) be a complete fuzzy metric space and let P and Q be self mapping of X .Let P and Q are owc. If there exists a point $q \in (0,1)$ for all $x, y \in X$ and t > 0

$$\int_{0}^{M(Sx,Sy,qt)} \varphi(t)d(t) \ge \int_{0}^{\alpha M(Px,Py,t) + \beta \min\left\{\frac{M(Px,Py,t) + M(Sy,Px,t) + M(Sx,Py,t)\right\}}{3}} \varphi(t)d(t)$$
(8)

for all $x, y \in X$, where $\alpha, \beta > 0$, $\alpha + \beta > 1$. Then P and S have a unique common fixed point.

Proof: Let the pairs $\{P,S\}$ be owc, so there is a point $x \in X$ such that Px = Sx. Suppose that there exist

another point $y \in X$ for which Py = Sy We claim that Sx = Sy by equation (8) we have

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

 $\int_{0}^{M(Sx,Sy,qt)} \varphi(t)d(t) \geq \int_{0}^{\alpha M(Px,Py,t) + \beta \min\left\{\frac{M(Px,Py,t) + M(Sy,Px,t) + M(Sx,Py,t)\right\}}{3}} \varphi(t)d(t)$

$$=\int_{0}^{\alpha M(Px,Py,t)+\beta min\left\{\frac{M(Sx,Sy,t)+M(Sy,Sx,t)+M(Sx,Sy,t)}{3}\right\}}\varphi(t)d(t)$$

$$=\int_{0}^{(\alpha+\beta)M(Sx,Sy,t)}\varphi(t)d(t)$$

A contradiction, since $(\alpha + \beta) > 1$ therefore Sx = Sy. Therefore Px = Py and Px is unique. From lemma 2.14, P and S have a unique fixed point.

REFRENCE

[1] S.K. Malhotra and N.Verma "Fixed point theorems in fuzzy metric spaces with integral type inequality" Int. J. Of Advanced Scientific Research and Technology issue vol.1(2012)

[2] S. K. Malhotra and N. Verma "Occasionally weakly compaitible mappings and fixed point theorem in fuzzy metric spaces satisfying integral type inequality" *Int. J. of Stat. And Math.* (2012)

[3] C.T. Aage, J.N. Salunke, "Common Fixed Point Theorems in Fuzzy Metric Spaces", *International Journal of pure and Applied Mathematics* 56(2), 2009, pp 155-164.

[4] C.T. Aage, J.N. Salunke, "Some Fixed Point Theorems in Fuzzy Metric Spaces", *International Journal of pure and Applied Mathematics* 56(3), 2009, pp 311-320.

[5] A.Al-Thagafi and Naseer Shahzad, "Generalized I-Nonexpansive Selfmaps and Invarient Approximations", *Acta Mathematica Sinica, English Series* May, 2008, Vol. 24, No.5pp 867876

[6] P. Balasubrmaniam, S. Muralisnkar, R.P. pant, "Common Fixed Points of four mappings in a fuzzy metric spaces", *J Fuzzy math.* 10(2) (2002)

[7] Y.J. Cho, H.K. Pathak, S.M. Kang, J.S. Jung "Common Fixed Points of compatible maps of type (A) on fuzzy metric spaces", *Fuzzy Sets and Systems* 93 (1998), 99-111

[8] A George, P. Veeramani, "On some results in fuzzy metric spaces", *Fuzzy Sets and Systems*, 64 (1994), 395-399.

[9] M. Grabiec, "Fixed points in fuzzy metric spaces", *Fuzzy Sets and Systems* 27 (1988), 385-389.

[10] O. Hadzic, "Common Fixed point theorems for families of mapping in complete metric space", *Math.Japon.*29 (1984), 127-134.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Management, IT and Engineering http://www.ijmra.us

[11] Mohd. Imdad and Javid Ali, "Some Fixed Point Theorems in Fuzzy Metric Spaces", *Mathematical Communications* 11(2006), 153-163 153.

[12]G. Jungck, "Compatible mappings and common fixed points (2)" Inter-nat. J.math. Math. Sci.(1988), 285-288.

[13] G. Jungck and B.E. Rhoades, "Fixed point for Set valued functions without Continuity", *Indian J. Pure Appl. Math*, 29 (3), (1998), pp.771-779.

[14] G. Jungck and B.E. Rhoades, "Fixed Point Theorems for Occasionally Weakly compatible Mappings", *Fixed point Theory*, Volume 7, No. 2, 2006, 287-296.

[15] G. Jungck and B.E. Rhoades, "Fixed Point Theorems for Occasionally Weakly compatible Mappings", *Erratum, Fixed point Theory*, Volume9,No.1, 2008,383-384.

[16] O. Kramosil and J. Michalek, "Fuzzy metric and statistical metric spaces", *Kybernetka*, 11(1975), 326-334.

[17] S. Kutukcu "A fixed point theorem for contraction type mappings in Menger spaces", *Am. J.Appl.* Sci. 4(6) (2007), 371-373.

[18] Servet Kutukcu, Sushil Shrma and Hanifi Tokogoz, "A Fixed Point Theorem in Fuzzy Metric Spaces" *Int. Journal of Math. Analysis*, Vol.1,2007, no. 18,861-872.

[19] S.N. Mishra, "Common Fixed points of compatible mapping in PM- spaces", *Math*. *Japon*.36 (1991), 283-289.

[20] R.P. Pant, "Common Fixed points of four mappings", Bull.Math. Soc.90 (1998), 281-286.

[21] R.P. Pant, "Common Fixed points of for contractive mapps", J. Math. Anal. Appl. 226(1998), 251-258.

[22] R.P. Pant, K. Jha, "A remark on common fixed points of four mappings in a fuzzy metric space", *J Fuzzy Math.* 12(2) (2004) ,433-437.

[23] H. K.Pathak and Prachi Sing ,"Common fixed Point Theorem for Weakly Compatible Mapping", *International Mathematical Forum*, 2, 2007, no.57,2831-2839.

[24] B. E. Rhoades, "Contractive definitions", Contemporary Math.72 (1988), 233-245.

[25] B. Schweizer and A. Sklar, "Statistical metric spaces", Pacific J.Math. (1960), 313-334.

[26] Seong Hoon Cho, "On common Fixed point in fuzzy metric space", *Int*. *Math. Forum*, 1,2006, 10 471-479.

[27] R. Vasuki, "Common fixed points for R-weakly commuting Maps in fuzzy metric spaces". *Indian J .Pure Appl. Math* 30 (1999) ,419-423.

61

[28] L.A. Zadeh , "Fuzzy sets, Inform and Control" 8(1965), 338-353.

[29] S.Sessa, "On weak commutativity condition of mapping in fixed point consideration". *Publ. Inst. Math(Beograd) N.S.*,32(46),(1982),149-153.

[30] P.V. Subramanayam, "Common fixed points theorem in fuzzy metric spaces", *Information Science* 83(1995) 105-112.

[31] Brijendra Singh & M.S. Chauhan, "Common fixed points of compatible maps, in fuzzy metric space". *Fuzzy sets and systems* 115(2000), 471-475.

[32] B.E. Rhodes "Two fixed point theorem for mapping satisfying a general contractive condition of integral type". *Int. J. Math. Sci.*, 3: pp4007-4013.

